Skip to content
Snippets Groups Projects
ratchet.cpp 17.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Copyright 2015 OpenMarket Ltd
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *     http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    #include "axolotl/ratchet.hh"
    
    #include "axolotl/message.hh"
    
    #include "axolotl/cipher.hh"
    
    #include <cstring>
    
    
    namespace {
    
    std::uint8_t PROTOCOL_VERSION = 3;
    
    std::size_t KEY_LENGTH = axolotl::Curve25519PublicKey::LENGTH;
    
    std::uint8_t MESSAGE_KEY_SEED[1] = {0x01};
    std::uint8_t CHAIN_KEY_SEED[1] = {0x02};
    std::size_t MAX_MESSAGE_GAP = 2000;
    
    void create_chain_key(
        axolotl::SharedKey const & root_key,
    
        axolotl::Curve25519KeyPair const & our_key,
        axolotl::Curve25519PublicKey const & their_key,
        axolotl::KdfInfo const & info,
        axolotl::SharedKey & new_root_key,
        axolotl::ChainKey & new_chain_key
    
        axolotl::SharedKey secret;
    
        axolotl::curve25519_shared_secret(our_key, their_key, secret);
        std::uint8_t derived_secrets[64];
        axolotl::hkdf_sha256(
            secret, sizeof(secret),
            root_key, sizeof(root_key),
    
            info.ratchet_info, info.ratchet_info_length,
    
            derived_secrets, sizeof(derived_secrets)
        );
        std::memcpy(new_root_key, derived_secrets, 32);
        std::memcpy(new_chain_key.key, derived_secrets + 32, 32);
        new_chain_key.index = 0;
    
        axolotl::unset(derived_secrets);
        axolotl::unset(secret);
    
    }
    
    
    void advance_chain_key(
    
        axolotl::ChainKey const & chain_key,
        axolotl::ChainKey & new_chain_key
    
    ) {
        axolotl::hmac_sha256(
            chain_key.key, sizeof(chain_key.key),
            CHAIN_KEY_SEED, sizeof(CHAIN_KEY_SEED),
            new_chain_key.key
        );
        new_chain_key.index = chain_key.index + 1;
    }
    
    
    void create_message_keys(
    
        axolotl::ChainKey const & chain_key,
        axolotl::KdfInfo const & info,
        axolotl::MessageKey & message_key
    
    ) {
        axolotl::hmac_sha256(
            chain_key.key, sizeof(chain_key.key),
            MESSAGE_KEY_SEED, sizeof(MESSAGE_KEY_SEED),
    
        );
        message_key.index = chain_key.index;
    }
    
    
    
    std::size_t verify_mac_and_decrypt(
        axolotl::Cipher const & cipher,
    
        axolotl::MessageKey const & message_key,
    
        axolotl::MessageReader const & reader,
        std::uint8_t * plaintext, std::size_t max_plaintext_length
    
        return cipher.decrypt(
            message_key.key, sizeof(message_key.key),
            reader.input, reader.input_length,
            reader.ciphertext, reader.ciphertext_length,
            plaintext, max_plaintext_length
    
    std::size_t verify_mac_and_decrypt_for_existing_chain(
    
        axolotl::Session const & session,
    
        axolotl::ChainKey const & chain,
    
        axolotl::MessageReader const & reader,
        std::uint8_t * plaintext, std::size_t max_plaintext_length
    
    ) {
        if (reader.counter < chain.index) {
    
            return std::size_t(-1);
    
        }
    
        /* Limit the number of hashes we're prepared to compute */
        if (reader.counter - chain.index > MAX_MESSAGE_GAP) {
    
            return std::size_t(-1);
    
        axolotl::ChainKey new_chain = chain;
    
    
        while (new_chain.index < reader.counter) {
            advance_chain_key(new_chain, new_chain);
        }
    
    
        axolotl::MessageKey message_key;
        create_message_keys(new_chain, session.kdf_info, message_key);
    
        std::size_t result = verify_mac_and_decrypt(
            session.ratchet_cipher, message_key, reader,
            plaintext, max_plaintext_length
        );
    
    
    std::size_t verify_mac_and_decrypt_for_new_chain(
    
        axolotl::Session const & session,
    
        axolotl::MessageReader const & reader,
        std::uint8_t * plaintext, std::size_t max_plaintext_length
    
        axolotl::SharedKey new_root_key;
        axolotl::ReceiverChain new_chain;
    
    
        /* They shouldn't move to a new chain until we've sent them a message
         * acknowledging the last one */
        if (session.sender_chain.empty()) {
            return false;
        }
    
        /* Limit the number of hashes we're prepared to compute */
        if (reader.counter > MAX_MESSAGE_GAP) {
            return false;
        }
    
        std::memcpy(
            new_chain.ratchet_key.public_key, reader.ratchet_key, KEY_LENGTH
        );
    
    
        create_chain_key(
    
            session.root_key, session.sender_chain[0].ratchet_key,
            new_chain.ratchet_key, session.kdf_info,
            new_root_key, new_chain.chain_key
    
        std::size_t result = verify_mac_and_decrypt_for_existing_chain(
            session, new_chain.chain_key, reader,
            plaintext, max_plaintext_length
    
        axolotl::unset(new_root_key);
        axolotl::unset(new_chain);
    
        return result;
    }
    
    } // namespace
    
    
    
    axolotl::Session::Session(
    
        axolotl::KdfInfo const & kdf_info,
        Cipher const & ratchet_cipher
    ) : kdf_info(kdf_info),
        ratchet_cipher(ratchet_cipher),
        last_error(axolotl::ErrorCode::SUCCESS) {
    
    }
    
    
    void axolotl::Session::initialise_as_bob(
        std::uint8_t const * shared_secret, std::size_t shared_secret_length,
        axolotl::Curve25519PublicKey const & their_ratchet_key
    ) {
        std::uint8_t derived_secrets[64];
        axolotl::hkdf_sha256(
            shared_secret, shared_secret_length,
            NULL, 0,
            kdf_info.root_info, kdf_info.root_info_length,
            derived_secrets, sizeof(derived_secrets)
        );
        receiver_chains.insert();
        std::memcpy(root_key, derived_secrets, 32);
        std::memcpy(receiver_chains[0].chain_key.key, derived_secrets + 32, 32);
        receiver_chains[0].ratchet_key = their_ratchet_key;
    
    }
    
    
    void axolotl::Session::initialise_as_alice(
        std::uint8_t const * shared_secret, std::size_t shared_secret_length,
        axolotl::Curve25519KeyPair const & our_ratchet_key
    ) {
        std::uint8_t derived_secrets[64];
        axolotl::hkdf_sha256(
            shared_secret, shared_secret_length,
            NULL, 0,
            kdf_info.root_info, kdf_info.root_info_length,
            derived_secrets, sizeof(derived_secrets)
        );
        sender_chain.insert();
        std::memcpy(root_key, derived_secrets, 32);
        std::memcpy(sender_chain[0].chain_key.key, derived_secrets + 32, 32);
        sender_chain[0].ratchet_key = our_ratchet_key;
    
    std::size_t axolotl::Session::pickle_max_output_length() {
        std::size_t counter_length = 4;
        std::size_t send_chain_length = counter_length + 64 + 32;
        std::size_t recv_chain_length = counter_length + 32 + 32;
        std::size_t skip_key_length = counter_length + 32 + 32 + 32 + 16;
        std::size_t pickle_length = 3 * counter_length + 32;
        pickle_length += sender_chain.size() * send_chain_length;
        pickle_length += receiver_chains.size() * recv_chain_length;
        pickle_length += skipped_message_keys.size() * skip_key_length;
    
        return pickle_length;
    
    }
    
    namespace {
    
    std::uint8_t * pickle_counter(
        std::uint8_t * output, std::uint32_t value
    ) {
        unsigned i = 4;
        output += 4;
        while (i--) { *(--output) = value; value >>= 8; }
        return output + 4;
    }
    
    std::uint8_t * unpickle_counter(
        std::uint8_t *input, std::uint32_t &value
    ) {
        unsigned i = 4;
        value = 0;
        while (i--) { value <<= 8; value |= *(input++); }
        return input;
    }
    
    std::uint8_t * pickle_bytes(
        std::uint8_t * output, std::size_t count, std::uint8_t const * bytes
    ) {
        std::memcpy(output, bytes, count);
        return output + count;
    }
    
    std::uint8_t * unpickle_bytes(
        std::uint8_t * input, std::size_t count, std::uint8_t * bytes
    ) {
        std::memcpy(bytes, input, count);
        return input + count;
    }
    
    } // namespace
    
    
    std::size_t axolotl::Session::pickle(
        std::uint8_t const * key, std::size_t key_length,
        std::uint8_t * output, std::size_t max_output_length
    ) {
        std::uint8_t * pos = output;
        if (max_output_length < pickle_max_output_length()) {
            last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
            return std::size_t(-1);
        }
    
        pos = pickle_counter(pos, sender_chain.size());
        pos = pickle_counter(pos, receiver_chains.size());
        pos = pickle_counter(pos, skipped_message_keys.size());
        pos = pickle_bytes(pos, 32, root_key);
        for (const axolotl::SenderChain &chain : sender_chain) {
            pos = pickle_counter(pos, chain.chain_key.index);
            pos = pickle_bytes(pos, 32, chain.chain_key.key);
            pos = pickle_bytes(pos, 32, chain.ratchet_key.public_key);
            pos = pickle_bytes(pos, 32, chain.ratchet_key.private_key);
        }
        for (const axolotl::ReceiverChain &chain : receiver_chains) {
            pos = pickle_counter(pos, chain.chain_key.index);
            pos = pickle_bytes(pos, 32, chain.chain_key.key);
            pos = pickle_bytes(pos, 32, chain.ratchet_key.public_key);
        }
        for (const axolotl::SkippedMessageKey &key : skipped_message_keys) {
            pos = pickle_counter(pos, key.message_key.index);
    
            pos = pickle_bytes(pos, 32, key.message_key.key);
    
            pos = pickle_bytes(pos, 32, key.ratchet_key.public_key);
        }
    
        return pos - output;
    
    }
    
    std::size_t axolotl::Session::unpickle(
        std::uint8_t const * key, std::size_t key_length,
        std::uint8_t * input, std::size_t input_length
    ) {
    
        std::uint8_t * pos = input;
        std::uint8_t * end = input + input_length;
        std::uint32_t send_chain_num, recv_chain_num, skipped_num;
    
        if (end - pos < 4 * 3 + 32) {} // input too small.
    
        pos = unpickle_counter(pos, send_chain_num);
        pos = unpickle_counter(pos, recv_chain_num);
        pos = unpickle_counter(pos, skipped_num);
        pos = unpickle_bytes(pos, 32, root_key);
    
        if (end - pos < send_chain_num * (32 * 3 + 4)) {} // input too small.
    
        while (send_chain_num--) {
            axolotl::SenderChain & chain = *sender_chain.insert(
                sender_chain.end()
            );
            pos = unpickle_counter(pos, chain.chain_key.index);
            pos = unpickle_bytes(pos, 32, chain.chain_key.key);
            pos = unpickle_bytes(pos, 32, chain.ratchet_key.public_key);
            pos = unpickle_bytes(pos, 32, chain.ratchet_key.private_key);
        }
    
        if (end - pos < recv_chain_num * (32 * 2 + 4)) {} // input too small.
    
        while (recv_chain_num--) {
            axolotl::ReceiverChain & chain = *receiver_chains.insert(
                receiver_chains.end()
            );
            pos = unpickle_counter(pos, chain.chain_key.index);
            pos = unpickle_bytes(pos, 32, chain.chain_key.key);
            pos = unpickle_bytes(pos, 32, chain.ratchet_key.public_key);
        }
    
        if (end - pos < skipped_num * (32 * 3 + 16 + 4)) {} // input too small.
    
        while (skipped_num--) {
            axolotl::SkippedMessageKey &key = *skipped_message_keys.insert(
                skipped_message_keys.end()
            );
            pos = unpickle_counter(pos, key.message_key.index);
    
            pos = unpickle_bytes(pos, 32, key.message_key.key);
    
            pos = unpickle_bytes(pos, 32, key.ratchet_key.public_key);
        }
    
    std::size_t axolotl::Session::encrypt_max_output_length(
        std::size_t plaintext_length
    ) {
    
        std::size_t counter = 0;
        if (!sender_chain.empty()) {
            counter = sender_chain[0].chain_key.index;
        }
    
        std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
        return axolotl::encode_message_length(
    
            counter, KEY_LENGTH, padded, ratchet_cipher.mac_length()
    
        );
    }
    
    
    std::size_t axolotl::Session::encrypt_random_length() {
    
        return sender_chain.empty() ? KEY_LENGTH : 0;
    
    }
    
    
    std::size_t axolotl::Session::encrypt(
        std::uint8_t const * plaintext, std::size_t plaintext_length,
        std::uint8_t const * random, std::size_t random_length,
        std::uint8_t * output, std::size_t max_output_length
    ) {
    
        std::size_t output_length = encrypt_max_output_length(plaintext_length);
    
    
        if (random_length < encrypt_random_length()) {
            last_error = axolotl::ErrorCode::NOT_ENOUGH_RANDOM;
            return std::size_t(-1);
        }
    
        if (max_output_length < output_length) {
    
            last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
            return std::size_t(-1);
        }
    
        if (sender_chain.empty()) {
    
            sender_chain.insert();
            axolotl::generate_key(random, sender_chain[0].ratchet_key);
            create_chain_key(
                root_key,
                sender_chain[0].ratchet_key,
                receiver_chains[0].ratchet_key,
                kdf_info,
                root_key, sender_chain[0].chain_key
            );
    
        }
    
        MessageKey keys;
    
        create_message_keys(sender_chain[0].chain_key, kdf_info, keys);
        advance_chain_key(sender_chain[0].chain_key, sender_chain[0].chain_key);
    
        std::size_t ciphertext_length = ratchet_cipher.encrypt_ciphertext_length(
            plaintext_length
        );
    
        std::uint32_t counter = keys.index;
    
    Mark Haines's avatar
    Mark Haines committed
        Curve25519PublicKey const & ratchet_key = sender_chain[0].ratchet_key;
    
        axolotl::MessageWriter writer;
    
        axolotl::encode_message(
            writer, PROTOCOL_VERSION, counter, KEY_LENGTH, ciphertext_length, output
        );
    
        std::memcpy(writer.ratchet_key, ratchet_key.public_key, KEY_LENGTH);
    
        ratchet_cipher.encrypt(
            keys.key, sizeof(keys.key),
    
            plaintext, plaintext_length,
    
            writer.ciphertext, ciphertext_length,
            output, output_length
    
        return output_length;
    
    std::size_t axolotl::Session::decrypt_max_plaintext_length(
    
        std::size_t input_length
    ) {
        return input_length;
    }
    
    
    std::size_t axolotl::Session::decrypt(
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t * plaintext, std::size_t max_plaintext_length
    ) {
        if (max_plaintext_length < decrypt_max_plaintext_length(input_length)) {
            last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
            return std::size_t(-1);
        }
    
    
        axolotl::MessageReader reader;
    
        axolotl::decode_message(
    
            reader, input, input_length, ratchet_cipher.mac_length()
        );
    
    
        if (reader.version != PROTOCOL_VERSION) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_VERSION;
            return std::size_t(-1);
        }
    
    
        if (!reader.has_counter || !reader.ratchet_key || !reader.ciphertext) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
            return std::size_t(-1);
        }
    
        if (reader.ratchet_key_length != KEY_LENGTH) {
    
            last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
            return std::size_t(-1);
        }
    
        ReceiverChain * chain = NULL;
        for (axolotl::ReceiverChain & receiver_chain : receiver_chains) {
            if (0 == std::memcmp(
    
                    receiver_chain.ratchet_key.public_key, reader.ratchet_key,
                    KEY_LENGTH
    
            )) {
                chain = &receiver_chain;
                break;
            }
        }
    
    
        std::size_t result = std::size_t(-1);
    
        if (!chain) {
            result = verify_mac_and_decrypt_for_new_chain(
                *this, reader, plaintext, max_plaintext_length
            );
        } else if (chain->chain_key.index > reader.counter) {
            /* Chain already advanced beyond the key for this message
             * Check if the message keys are in the skipped key list. */
            for (axolotl::SkippedMessageKey & skipped : skipped_message_keys) {
                if (reader.counter == skipped.message_key.index
                        && 0 == std::memcmp(
                            skipped.ratchet_key.public_key, reader.ratchet_key,
                            KEY_LENGTH
                        )
                ) {
                    /* Found the key for this message. Check the MAC. */
    
                    result = verify_mac_and_decrypt(
                        ratchet_cipher, skipped.message_key, reader,
                        plaintext, max_plaintext_length
                    );
    
                    if (result != std::size_t(-1)) {
    
                        /* Remove the key from the skipped keys now that we've
                         * decoded the message it corresponds to. */
    
                        skipped_message_keys.erase(&skipped);
                        return result;
                    }
                }
            }
    
        } else {
            result = verify_mac_and_decrypt_for_existing_chain(
                *this, chain->chain_key, reader, plaintext, max_plaintext_length
            );
        }
    
        if (result == std::size_t(-1)) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
            return std::size_t(-1);
    
        }
    
        if (!chain) {
    
            /* They have started using a new empheral ratchet key.
             * We need to derive a new set of chain keys.
             * We can discard our previous empheral ratchet key.
             * We will generate a new key when we send the next message. */
            chain = receiver_chains.insert();
            std::memcpy(
                chain->ratchet_key.public_key, reader.ratchet_key, KEY_LENGTH
            );
            create_chain_key(
                root_key, sender_chain[0].ratchet_key, chain->ratchet_key,
                kdf_info, root_key, chain->chain_key
            );
    
            sender_chain.erase(sender_chain.begin());
    
        while (chain->chain_key.index < reader.counter) {
            axolotl::SkippedMessageKey & key = *skipped_message_keys.insert();
            create_message_keys(chain->chain_key, kdf_info, key.message_key);
            key.ratchet_key = chain->ratchet_key;
            advance_chain_key(chain->chain_key, chain->chain_key);
        }
    
        advance_chain_key(chain->chain_key, chain->chain_key);