Skip to content
Snippets Groups Projects
crypto.cpp 9.03 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Copyright 2015 OpenMarket Ltd
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *     http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    #include "olm/crypto.h"
    
    #include <cstring>
    
    extern "C" {
    
    #include "crypto-algorithms/aes.h"
    #include "crypto-algorithms/sha256.h"
    
    }
    
    
    #include "ed25519/src/ed25519.h"
    #include "curve25519-donna.h"
    
    
    namespace {
    
    static const std::uint8_t CURVE25519_BASEPOINT[32] = {9};
    
    static const std::size_t AES_KEY_SCHEDULE_LENGTH = 60;
    
    static const std::size_t AES_KEY_BITS = 8 * AES256_KEY_LENGTH;
    
    static const std::size_t AES_BLOCK_LENGTH = 16;
    
    static const std::size_t SHA256_BLOCK_LENGTH = 64;
    
    static const std::uint8_t HKDF_DEFAULT_SALT[32] = {};
    
    
    template<std::size_t block_size>
    inline static void xor_block(
        std::uint8_t * block,
        std::uint8_t const * input
    ) {
        for (std::size_t i = 0; i < block_size; ++i) {
            block[i] ^= input[i];
        }
    }
    
    
    inline static void hmac_sha256_key(
        std::uint8_t const * input_key, std::size_t input_key_length,
        std::uint8_t * hmac_key
    ) {
    
        std::memset(hmac_key, 0, SHA256_BLOCK_LENGTH);
    
        if (input_key_length > SHA256_BLOCK_LENGTH) {
            ::SHA256_CTX context;
            ::sha256_init(&context);
            ::sha256_update(&context, input_key, input_key_length);
            ::sha256_final(&context, hmac_key);
        } else {
            std::memcpy(hmac_key, input_key, input_key_length);
        }
    }
    
    
    
    inline static void hmac_sha256_init(
    
        ::SHA256_CTX * context,
        std::uint8_t const * hmac_key
    ) {
        std::uint8_t i_pad[SHA256_BLOCK_LENGTH];
        std::memcpy(i_pad, hmac_key, SHA256_BLOCK_LENGTH);
        for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
    
            i_pad[i] ^= 0x36;
    
        }
        ::sha256_init(context);
        ::sha256_update(context, i_pad, SHA256_BLOCK_LENGTH);
    
    inline static void hmac_sha256_final(
    
        ::SHA256_CTX * context,
        std::uint8_t const * hmac_key,
        std::uint8_t * output
    ) {
    
        std::uint8_t o_pad[SHA256_BLOCK_LENGTH + SHA256_OUTPUT_LENGTH];
    
        std::memcpy(o_pad, hmac_key, SHA256_BLOCK_LENGTH);
        for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
    
            o_pad[i] ^= 0x5C;
    
        ::sha256_final(context, o_pad + SHA256_BLOCK_LENGTH);
    
        ::SHA256_CTX final_context;
        ::sha256_init(&final_context);
    
        ::sha256_update(&final_context, o_pad, sizeof(o_pad));
    
        ::sha256_final(&final_context, output);
    
        olm::unset(final_context);
        olm::unset(o_pad);
    
    void _olm_crypto_curve25519_generate_key(
        uint8_t const * random_32_bytes,
        struct _olm_curve25519_key_pair *key_pair
    
        std::memcpy(
            key_pair->private_key.private_key, random_32_bytes,
            CURVE25519_KEY_LENGTH
        );
    
            key_pair->public_key.public_key,
            key_pair->private_key.private_key,
            CURVE25519_BASEPOINT
    
    void _olm_crypto_curve25519_shared_secret(
        const struct _olm_curve25519_key_pair *our_key,
        const struct _olm_curve25519_public_key * their_key,
    
        ::curve25519_donna(output, our_key->private_key.private_key, their_key->public_key);
    
    void _olm_crypto_ed25519_generate_key(
    
        std::uint8_t const * random_32_bytes,
    
        struct _olm_ed25519_key_pair *key_pair
    
        ::ed25519_create_keypair(
    
            key_pair->public_key.public_key, key_pair->private_key.private_key,
    
            random_32_bytes
        );
    
    void _olm_crypto_ed25519_sign(
        const struct _olm_ed25519_key_pair *our_key,
    
        std::uint8_t const * message, std::size_t message_length,
        std::uint8_t * output
    ) {
        ::ed25519_sign(
            output,
            message, message_length,
    
            our_key->public_key.public_key,
            our_key->private_key.private_key
    
    int _olm_crypto_ed25519_verify(
        const struct _olm_ed25519_public_key *their_key,
    
        std::uint8_t const * message, std::size_t message_length,
        std::uint8_t const * signature
    ) {
        return 0 != ::ed25519_verify(
            signature,
            message, message_length,
    
    std::size_t _olm_crypto_aes_encrypt_cbc_length(
    
        std::size_t input_length
    ) {
        return input_length + AES_BLOCK_LENGTH - input_length % AES_BLOCK_LENGTH;
    }
    
    
    
    void _olm_crypto_aes_encrypt_cbc(
        _olm_aes256_key const *key,
        _olm_aes256_iv const *iv,
    
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t * output
    ) {
    
        std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
    
        ::aes_key_setup(key->key, key_schedule, AES_KEY_BITS);
    
        std::uint8_t input_block[AES_BLOCK_LENGTH];
    
        std::memcpy(input_block, iv->iv, AES_BLOCK_LENGTH);
    
        while (input_length >= AES_BLOCK_LENGTH) {
            xor_block<AES_BLOCK_LENGTH>(input_block, input);
    
            ::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
    
            std::memcpy(input_block, output, AES_BLOCK_LENGTH);
            input += AES_BLOCK_LENGTH;
            output += AES_BLOCK_LENGTH;
            input_length -= AES_BLOCK_LENGTH;
        }
        std::size_t i = 0;
        for (; i < input_length; ++i) {
            input_block[i] ^= input[i];
        }
        for (; i < AES_BLOCK_LENGTH; ++i) {
            input_block[i] ^= AES_BLOCK_LENGTH - input_length;
    
        ::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
    
        olm::unset(key_schedule);
        olm::unset(input_block);
    
    std::size_t _olm_crypto_aes_decrypt_cbc(
        _olm_aes256_key const *key,
        _olm_aes256_iv const *iv,
    
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t * output
    ) {
    
        std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
    
        ::aes_key_setup(key->key, key_schedule, AES_KEY_BITS);
    
        std::uint8_t block1[AES_BLOCK_LENGTH];
        std::uint8_t block2[AES_BLOCK_LENGTH];
    
        std::memcpy(block1, iv->iv, AES_BLOCK_LENGTH);
    
        for (std::size_t i = 0; i < input_length; i += AES_BLOCK_LENGTH) {
    
            std::memcpy(block2, &input[i], AES_BLOCK_LENGTH);
    
            ::aes_decrypt(&input[i], &output[i], key_schedule, AES_KEY_BITS);
    
            xor_block<AES_BLOCK_LENGTH>(&output[i], block1);
            std::memcpy(block1, block2, AES_BLOCK_LENGTH);
    
        olm::unset(key_schedule);
        olm::unset(block1);
        olm::unset(block2);
    
        std::size_t padding = output[input_length - 1];
        return (padding > input_length) ? std::size_t(-1) : (input_length - padding);
    
    void _olm_crypto_sha256(
    
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t * output
    ) {
        ::SHA256_CTX context;
        ::sha256_init(&context);
        ::sha256_update(&context, input, input_length);
        ::sha256_final(&context, output);
    
    void _olm_crypto_hmac_sha256(
    
        std::uint8_t const * key, std::size_t key_length,
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t * output
    ) {
        std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
        ::SHA256_CTX context;
        hmac_sha256_key(key, key_length, hmac_key);
        hmac_sha256_init(&context, hmac_key);
        ::sha256_update(&context, input, input_length);
        hmac_sha256_final(&context, hmac_key, output);
    
        olm::unset(hmac_key);
        olm::unset(context);
    
    void _olm_crypto_hkdf_sha256(
    
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t const * salt, std::size_t salt_length,
    
        std::uint8_t const * info, std::size_t info_length,
    
        std::uint8_t * output, std::size_t output_length
    ) {
        ::SHA256_CTX context;
    
        std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
    
        std::uint8_t step_result[SHA256_OUTPUT_LENGTH];
    
        std::size_t bytes_remaining = output_length;
        std::uint8_t iteration = 1;
        if (!salt) {
            salt = HKDF_DEFAULT_SALT;
            salt_length = sizeof(HKDF_DEFAULT_SALT);
        }
    
        /* Extract */
    
        hmac_sha256_key(salt, salt_length, hmac_key);
        hmac_sha256_init(&context, hmac_key);
    
        ::sha256_update(&context, input, input_length);
    
        hmac_sha256_final(&context, hmac_key, step_result);
    
        hmac_sha256_key(step_result, SHA256_OUTPUT_LENGTH, hmac_key);
    
        /* Expand */
    
        hmac_sha256_init(&context, hmac_key);
    
        ::sha256_update(&context, info, info_length);
        ::sha256_update(&context, &iteration, 1);
    
        hmac_sha256_final(&context, hmac_key, step_result);
    
        while (bytes_remaining > SHA256_OUTPUT_LENGTH) {
            std::memcpy(output, step_result, SHA256_OUTPUT_LENGTH);
            output += SHA256_OUTPUT_LENGTH;
            bytes_remaining -= SHA256_OUTPUT_LENGTH;
    
            hmac_sha256_init(&context, hmac_key);
    
            ::sha256_update(&context, step_result, SHA256_OUTPUT_LENGTH);
    
            ::sha256_update(&context, info, info_length);
            ::sha256_update(&context, &iteration, 1);
    
            hmac_sha256_final(&context, hmac_key, step_result);
    
        }
        std::memcpy(output, step_result, bytes_remaining);
    
        olm::unset(context);
        olm::unset(hmac_key);
        olm::unset(step_result);