Skip to content
Snippets Groups Projects
axolotl.cpp 13.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include "axolotl/axolotl.hh"
    
    #include "axolotl/message.hh"
    
    #include <cstring>
    
    
    namespace {
    
    std::uint8_t PROTOCOL_VERSION = 3;
    std::size_t MAC_LENGTH = 8;
    
    std::size_t KEY_LENGTH = axolotl::Curve25519PublicKey::LENGTH;
    
    std::uint8_t MESSAGE_KEY_SEED[1] = {0x01};
    std::uint8_t CHAIN_KEY_SEED[1] = {0x02};
    std::size_t MAX_MESSAGE_GAP = 2000;
    
    
    template<typename T>
    void unset(
        T & value
    ) {
        std::memset(&value, 0, sizeof(T));
    }
    
    
    
    void create_chain_key(
        axolotl::SharedKey const & root_key,
    
        axolotl::Curve25519KeyPair const & our_key,
        axolotl::Curve25519PublicKey const & their_key,
        axolotl::KdfInfo const & info,
        axolotl::SharedKey & new_root_key,
        axolotl::ChainKey & new_chain_key
    
        axolotl::SharedKey secret;
    
        axolotl::curve25519_shared_secret(our_key, their_key, secret);
        std::uint8_t derived_secrets[64];
        axolotl::hkdf_sha256(
            secret, sizeof(secret),
            root_key, sizeof(root_key),
    
            info.ratchet_info, info.ratchet_info_length,
    
            derived_secrets, sizeof(derived_secrets)
        );
        std::memcpy(new_root_key, derived_secrets, 32);
        std::memcpy(new_chain_key.key, derived_secrets + 32, 32);
        new_chain_key.index = 0;
    
        unset(derived_secrets);
        unset(secret);
    
    }
    
    
    void advance_chain_key(
    
        axolotl::ChainKey const & chain_key,
        axolotl::ChainKey & new_chain_key
    
    ) {
        axolotl::hmac_sha256(
            chain_key.key, sizeof(chain_key.key),
            CHAIN_KEY_SEED, sizeof(CHAIN_KEY_SEED),
            new_chain_key.key
        );
        new_chain_key.index = chain_key.index + 1;
    }
    
    
    void create_message_keys(
    
        axolotl::ChainKey const & chain_key,
        axolotl::KdfInfo const & info,
        axolotl::MessageKey & message_key
    
        axolotl::SharedKey secret;
    
        axolotl::hmac_sha256(
            chain_key.key, sizeof(chain_key.key),
            MESSAGE_KEY_SEED, sizeof(MESSAGE_KEY_SEED),
            secret
        );
        std::uint8_t derived_secrets[80];
        axolotl::hkdf_sha256(
            secret, sizeof(secret),
    
            NULL, 0,
            info.message_info, info.message_info_length,
    
            derived_secrets, sizeof(derived_secrets)
        );
    
        std::memcpy(message_key.cipher_key.key, derived_secrets, 32);
    
        std::memcpy(message_key.mac_key, derived_secrets + 32, 32);
    
        std::memcpy(message_key.iv.iv, derived_secrets + 64, 16);
    
        message_key.index = chain_key.index;
    
        unset(derived_secrets);
        unset(secret);
    
    }
    
    
    bool verify_mac(
    
        axolotl::MessageKey const & message_key,
    
        std::uint8_t const * input,
        axolotl::MessageReader const & reader
    ) {
    
        std::uint8_t mac[axolotl::HMAC_SHA256_OUTPUT_LENGTH];
    
        axolotl::hmac_sha256(
    
            message_key.mac_key, sizeof(message_key.mac_key),
            input, reader.body_length,
    
            mac
        );
    
        bool result = std::memcmp(mac, reader.mac, MAC_LENGTH) == 0;
    
        unset(mac);
    
        return result;
    }
    
    
    bool verify_mac_for_existing_chain(
        axolotl::Session const & session,
    
        axolotl::ChainKey const & chain,
    
        std::uint8_t const * input,
        axolotl::MessageReader const & reader
    ) {
        if (reader.counter < chain.index) {
            return false;
        }
    
        /* Limit the number of hashes we're prepared to compute */
        if (reader.counter - chain.index > MAX_MESSAGE_GAP) {
            return false;
        }
    
    
        axolotl::ChainKey new_chain = chain;
    
    
        while (new_chain.index < reader.counter) {
            advance_chain_key(new_chain, new_chain);
        }
    
    
        axolotl::MessageKey message_key;
        create_message_keys(new_chain, session.kdf_info, message_key);
    
    
        bool result = verify_mac(message_key, input, reader);
    
        unset(new_chain);
    
        return result;
    }
    
    
    bool verify_mac_for_new_chain(
        axolotl::Session const & session,
        std::uint8_t const * input,
        axolotl::MessageReader const & reader
    ) {
    
        axolotl::SharedKey new_root_key;
        axolotl::ReceiverChain new_chain;
    
    
        /* They shouldn't move to a new chain until we've sent them a message
         * acknowledging the last one */
        if (session.sender_chain.empty()) {
            return false;
        }
    
        /* Limit the number of hashes we're prepared to compute */
        if (reader.counter > MAX_MESSAGE_GAP) {
            return false;
        }
    
        std::memcpy(
            new_chain.ratchet_key.public_key, reader.ratchet_key, KEY_LENGTH
        );
    
    
        create_chain_key(
    
            session.root_key, session.sender_chain[0].ratchet_key,
            new_chain.ratchet_key, session.kdf_info,
            new_root_key, new_chain.chain_key
    
        );
    
        bool result = verify_mac_for_existing_chain(
    
            session, new_chain.chain_key, input, reader
    
        unset(new_root_key);
        unset(new_chain);
    
        return result;
    }
    
    } // namespace
    
    
    
    axolotl::Session::Session(
        axolotl::KdfInfo const & kdf_info
    ) : kdf_info(kdf_info), last_error(axolotl::ErrorCode::SUCCESS) {
    }
    
    
    void axolotl::Session::initialise_as_bob(
        std::uint8_t const * shared_secret, std::size_t shared_secret_length,
        axolotl::Curve25519PublicKey const & their_ratchet_key
    ) {
        std::uint8_t derived_secrets[64];
        axolotl::hkdf_sha256(
            shared_secret, shared_secret_length,
            NULL, 0,
            kdf_info.root_info, kdf_info.root_info_length,
            derived_secrets, sizeof(derived_secrets)
        );
        receiver_chains.insert();
        std::memcpy(root_key, derived_secrets, 32);
        std::memcpy(receiver_chains[0].chain_key.key, derived_secrets + 32, 32);
        receiver_chains[0].ratchet_key = their_ratchet_key;
        unset(derived_secrets);
    }
    
    
    void axolotl::Session::initialise_as_alice(
        std::uint8_t const * shared_secret, std::size_t shared_secret_length,
        axolotl::Curve25519KeyPair const & our_ratchet_key
    ) {
        std::uint8_t derived_secrets[64];
        axolotl::hkdf_sha256(
            shared_secret, shared_secret_length,
            NULL, 0,
            kdf_info.root_info, kdf_info.root_info_length,
            derived_secrets, sizeof(derived_secrets)
        );
        sender_chain.insert();
        std::memcpy(root_key, derived_secrets, 32);
        std::memcpy(sender_chain[0].chain_key.key, derived_secrets + 32, 32);
        sender_chain[0].ratchet_key = our_ratchet_key;
        unset(derived_secrets);
    }
    
    
    
    std::size_t axolotl::Session::encrypt_max_output_length(
        std::size_t plaintext_length
    ) {
    
        std::size_t counter = 0;
        if (!sender_chain.empty()) {
            counter = sender_chain[0].chain_key.index;
        }
    
        std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
        return axolotl::encode_message_length(
            counter, KEY_LENGTH, padded, MAC_LENGTH
        );
    }
    
    
    std::size_t axolotl::Session::encrypt_random_length() {
    
        return sender_chain.empty() ? KEY_LENGTH : 0;
    
    }
    
    
    std::size_t axolotl::Session::encrypt(
        std::uint8_t const * plaintext, std::size_t plaintext_length,
        std::uint8_t const * random, std::size_t random_length,
        std::uint8_t * output, std::size_t max_output_length
    ) {
        if (random_length < encrypt_random_length()) {
            last_error = axolotl::ErrorCode::NOT_ENOUGH_RANDOM;
            return std::size_t(-1);
        }
    
        if (max_output_length < encrypt_max_output_length(plaintext_length)) {
    
            last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
            return std::size_t(-1);
        }
    
        if (sender_chain.empty()) {
    
            sender_chain.insert();
            axolotl::generate_key(random, sender_chain[0].ratchet_key);
            create_chain_key(
                root_key,
                sender_chain[0].ratchet_key,
                receiver_chains[0].ratchet_key,
                kdf_info,
                root_key, sender_chain[0].chain_key
            );
    
        }
    
        MessageKey keys;
    
        create_message_keys(sender_chain[0].chain_key, kdf_info, keys);
        advance_chain_key(sender_chain[0].chain_key, sender_chain[0].chain_key);
    
    
        std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
        std::uint32_t counter = keys.index;
        const Curve25519PublicKey &ratchet_key = sender_chain[0].ratchet_key;
    
        axolotl::MessageWriter writer(axolotl::encode_message(
    
            PROTOCOL_VERSION, counter, KEY_LENGTH, padded, output
    
        std::memcpy(writer.ratchet_key, ratchet_key.public_key, KEY_LENGTH);
    
    
        axolotl::aes_encrypt_cbc(
            keys.cipher_key, keys.iv,
            plaintext, plaintext_length,
            writer.ciphertext
        );
    
    
        std::uint8_t mac[axolotl::HMAC_SHA256_OUTPUT_LENGTH];
    
        axolotl::hmac_sha256(
            keys.mac_key, sizeof(keys.mac_key),
    
            output, writer.body_length,
    
            mac
        );
        std::memcpy(writer.mac, mac, MAC_LENGTH);
    
    
        unset(keys);
    
        return writer.body_length + MAC_LENGTH;
    }
    
    
    
    std::size_t axolotl::Session::decrypt_max_plaintext_length(
    
        std::size_t input_length
    ) {
        return input_length;
    }
    
    
    std::size_t axolotl::Session::decrypt(
        std::uint8_t const * input, std::size_t input_length,
        std::uint8_t * plaintext, std::size_t max_plaintext_length
    ) {
        if (max_plaintext_length < decrypt_max_plaintext_length(input_length)) {
            last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
            return std::size_t(-1);
        }
    
        axolotl::MessageReader reader(axolotl::decode_message(
            input, input_length, MAC_LENGTH
        ));
    
        if (reader.version != PROTOCOL_VERSION) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_VERSION;
            return std::size_t(-1);
        }
    
    
        if (reader.body_length == 0 || reader.ratchet_key_length != KEY_LENGTH) {
    
            last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
            return std::size_t(-1);
        }
    
        ReceiverChain * chain = NULL;
        for (axolotl::ReceiverChain & receiver_chain : receiver_chains) {
            if (0 == std::memcmp(
    
                    receiver_chain.ratchet_key.public_key, reader.ratchet_key,
                    KEY_LENGTH
    
            )) {
                chain = &receiver_chain;
                break;
            }
        }
    
        if (!chain) {
            if (!verify_mac_for_new_chain(*this, input, reader)) {
                last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                return std::size_t(-1);
            }
        } else {
    
            if (chain->chain_key.index > reader.counter) {
    
                /* Chain already advanced beyond the key for this message
                 * Check if the message keys are in the skipped key list. */
    
                for (axolotl::SkippedMessageKey & skipped : skipped_message_keys) {
    
                    if (reader.counter == skipped.message_key.index
                            && 0 == std::memcmp(
    
                                skipped.ratchet_key.public_key, reader.ratchet_key,
                                KEY_LENGTH
                            )
                    ) {
    
                        /* Found the key for this message. Check the MAC. */
                        if (!verify_mac(skipped.message_key, input, reader)) {
                            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                            return std::size_t(-1);
                        }
    
                        std::size_t result = axolotl::aes_decrypt_cbc(
                            skipped.message_key.cipher_key,
                            skipped.message_key.iv,
                            reader.ciphertext, reader.ciphertext_length,
                            plaintext
                        );
    
                        if (result == std::size_t(-1)) {
                            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                            return result;
                        }
    
                        /* Remove the key from the skipped keys now that we've
                         * decoded the message it corresponds to. */
    
                        unset(skipped);
    
                        skipped_message_keys.erase(&skipped);
                        return result;
                    }
                }
                /* No matching keys for the message, fail with bad mac */
                last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                return std::size_t(-1);
    
            } else if (!verify_mac_for_existing_chain(
                   *this, chain->chain_key, input, reader
            )) {
    
                last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                return std::size_t(-1);
            }
        }
    
        if (!chain) {
    
            /* They have started using a new empheral ratchet key.
             * We need to derive a new set of chain keys.
             * We can discard our previous empheral ratchet key.
             * We will generate a new key when we send the next message. */
            chain = receiver_chains.insert();
            std::memcpy(
                chain->ratchet_key.public_key, reader.ratchet_key, KEY_LENGTH
            );
            create_chain_key(
                root_key, sender_chain[0].ratchet_key, chain->ratchet_key,
                kdf_info, root_key, chain->chain_key
            );
            unset(sender_chain[0]);
            sender_chain.erase(sender_chain.begin());
    
        while (chain->chain_key.index < reader.counter) {
            axolotl::SkippedMessageKey & key = *skipped_message_keys.insert();
            create_message_keys(chain->chain_key, kdf_info, key.message_key);
            key.ratchet_key = chain->ratchet_key;
            advance_chain_key(chain->chain_key, chain->chain_key);
        }
    
        axolotl::MessageKey message_key;
        create_message_keys(chain->chain_key, kdf_info, message_key);
        std::size_t result = axolotl::aes_decrypt_cbc(
            message_key.cipher_key,
            message_key.iv,
            reader.ciphertext, reader.ciphertext_length,
            plaintext
        );
        unset(message_key);
    
        advance_chain_key(chain->chain_key, chain->chain_key);
    
        if (result == std::size_t(-1)) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
            return std::size_t(-1);
        } else {
            return result;
        }